

TECH-VIHV-200.1

index

3

link to your page / link a su página

			7	
► CET(7	
► CET	JP 5		10	
• • • • • • • • • •				• • • • • •
VNKEH E	lectro-hydra	ulic directional control	13	
► CET	OP 7		17	
► CET	OP 8		18	
► CET	OP 10		19	
Aodular va	Ives series			
► KRV	relief valves		20	
	V reducing valv	es	23	
-	check valves		25	
► KPC	v pilot check va	lves	27	
► KFR	flow regulator v	alves	29	
CONVI	ENTIONAL VAL	VES: PRESSURE CONTROLS		
► DAM			33	
► DIU			35	
/odular va	Ilves series			
			37	

INTRODUCTION

Introduction

Hydraulic valves, in addition to the force density advantage of actuators, are what help make hydraulics unique in their control of force, torque and motion. Valves govern direction, pressure and flow of hydraulic fluid, enabling smooth, safe and controlled use of actuators.

Every machine both requires and uses valves, varying vastly in execution from a few valves to dozens on one machine. Their use can be as simple as a relief valve to protect your pump and actuator, such as the relief valve built into the kick-off valve on a log splitter. Conversely, the complexity of a hydraulic circuit can be extensive, using a dozen valves per function as can be seen in manifolds, such as a pilot operated valve with dual counterbalance valves, dual flow controls, dual post-compensation and load sensing checks.

Directional control valves are often described as the number of "ways" fluid can travel through itself, and also by the positions available to be shifted into. The ways are equal to the number of work ports, so a 4-way valve will have pressure, tank and A and B work ports. Positions are equal to the number of positional envelopes. For example, one would describe a double acting single-monoblock valve as "4-way, 3-position," or simply a "4/3 valve."

Directional valves are available in monoblock or sectional valves, common to the mobilehydraulic industry, as well as subplate mounted industrial type valves such as ISO style D03's, D05's et al. Also common to both mobile and industrial markets are cartridge valves installed into manifold blocks. Cartridge valve manufacturers offer many unique products, and allow high levels of creativity with limitless available valve combinations.

Pressure valves are components designed to in some way limit pressure. Most pressure valves are based on a poppet being pushed against a seat with an adjustable spring. A relief valve controls maximum pressure for either the entire system or a sub-circuit of it, the lowest spring pressure being the one to open up first. Most other pressure valves are based on the relief valve's simple spring-loaded ball or poppet.

DIRECTIONAL ON/OFF CONTROL

Vincke solenoid valves is designed and tested under innovative concepts to satisfy the advanced needs of currents machines: versatility, reduced power absorbed and safety of use.

Solenoid directional valves are used for changing flow direction in hydraulic systems.

Technical characteristics

		Size/Type		
		6	10	
working pressure	Oil ports P,A,B	35	31.5	
Mpa	Oil ports T	16	16	
Max. Flow L/min		80	120	
Working fluid		Mineral oil; phospate-ester		
Fluid Temperature °C		-2070		
Visco	osity mm²/s	2.8100		
working voltage V	DC	12	24	
working voltage v	AC	110V/50Hz	220V/50Hz	
Max. Swi	ch frequency T/h	15000 (DC)	7200 (AC)	
insulation grade		IP65		
Woight kg	Single solenoid	1.45 DC 1.4 AC	5.1 DC 4.3 AC	
Weight kg	Double solenoid	1.95 DC 1.9 AC	6.7 DC 5.1 AC	

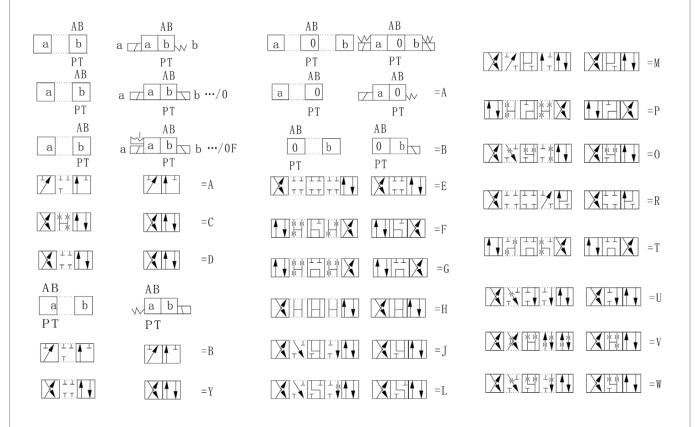
Cleanliness

The maximum allowable cleanliness of the oil should be according to 9th degree of Standard NAS1638. It is suggested that the minimum filter rating should be $\beta 10 \ge 75$.

Ordering code

4 main ports Nominal size 6 Cetop 3 or 10 Cetop 5 Type of spool E,J,D,C,HA,E etc. With spring return = no code Without spring return = O Without spring return with detent =OF

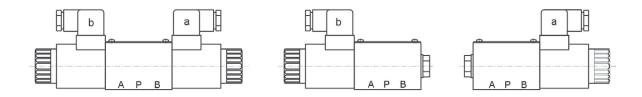
4VNKSV - 6 - E - OF - DC24 - 4L


Electrical Connection: 4L= DIN connector+led - 4X= DIN connector without led DC 24 or DC12 AC220 AC110 AC24

DIRECTIONAL ON/OFF CONTROL

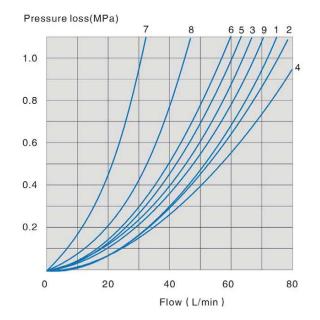
Code symbol

1)Example:


Spool symbol H with spool A, ordering code HA

Solenoid directional valves are used for changing flow direction in hydraulic systems.

DIRECTIONAL ON/OFF CONTROL

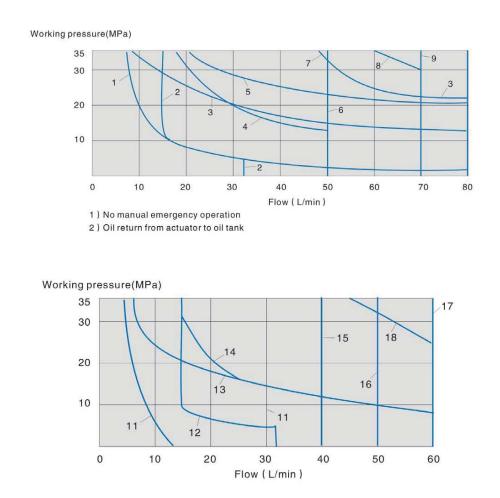


CETOP 3 SIZE 6

SPECIFICATION PERFORMANCE CURVE Measured at v=41mm²/s and t=50°C

Function	Direction				
Code	P→A	P→B	A→T	B→T	
С	1	1	3	1	
D	5	5	3	3	
E	3	3	1	1	
F	1	3	1	1	
G	6	6	9	9	
Н	2	4	2	2	
J	1	1	2	1	
L	3	3	4	9	
М	2	3	3	3	
Р	3	1	1	1	

8. Spool symbol G in the neutral position P→T

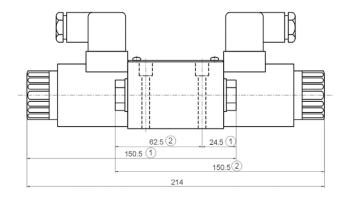


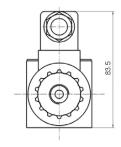
DIRECTIONAL ON/OFF CONTROL

Specification working limits

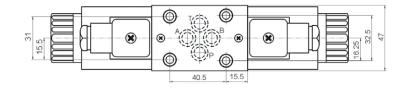
With regard to the four-way valve, the normal flow data as show is get from the regular use of two directions of the flow. See tables. If only one flow direction is needed, the maximum flow may be very small in the serious condition.

DC 24 12 110		AC 220 110 24, 50HZ	
Curve	Symbol	Curve Symbol	
4	FΡ	14	F M
5	J	15	G
6	G H	16	Н
7	L	17	E H/OF E/OF J M L
8	C D	18	C D
9	Μ		
10	E H/OF E/OF		

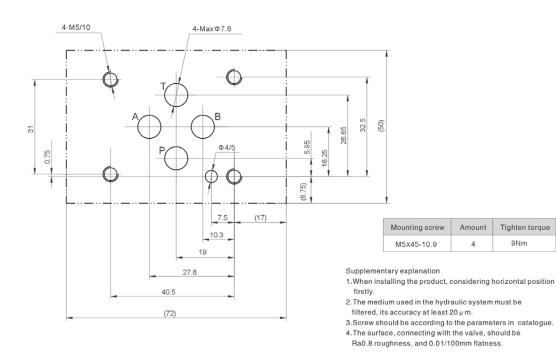




DIRECTIONAL ON/OFF CONTROL

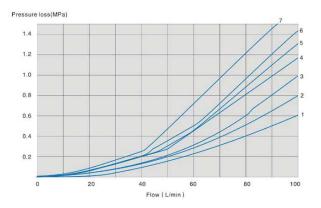

12

External dimensions



Two positions Electrical operated directional control valve

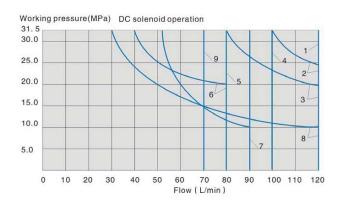
Size of subplate oil port



DIRECTIONAL ON/OFF CONTROL

CETOP 5 SIZE 10

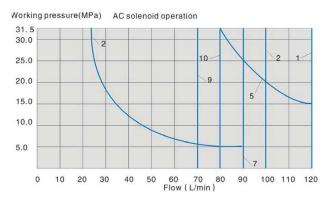
SPECIFICATION PERFORMANCE CURVE Measured at v=41mm²/s and t=50°C


Function	Direction				
Code	P→A	P→B	A→T	B→T	
СD	2	2	3	3	
E	2	2	4	4	
F	2	3	3	5	
G	3	3	4	6	
Н	1	1	4	5	
L	1	1	4	5	
М	1	1	5	1	
Р	3	2	5	3	

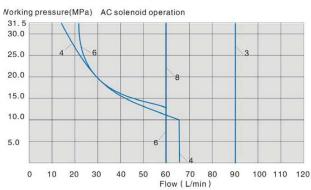
4.Spool symbol G in neutral position P→T

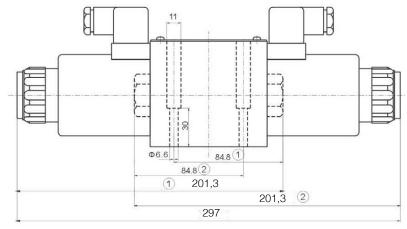
Specification working limits

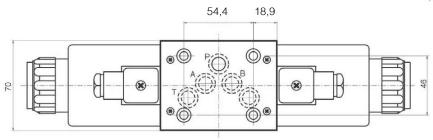
With regard to the four-way valve, the normal flow data as shown is get from the regular use of two directions of the flow (e.g. P to A, and simultaneous return flow from B to T). See tables, if only one flow direction is needed, for example: when a four port valve which is closed up port A or port B, used as a three-way valve, the maximum flow may be very small in the serious condition.

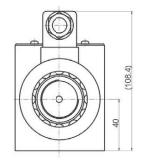

Curve	Symbol			
1	C D H/OF E/OF M			
2	E			
4	LJH			
6	G			
7	FΡ			

(1) Return circuit (independent of area ratio)

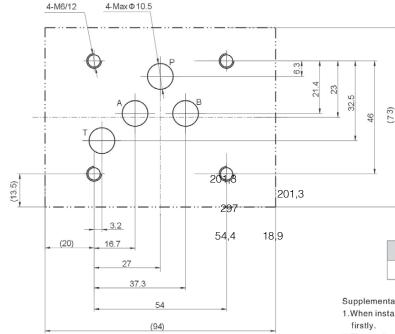



DIRECTIONAL ON/OFF CONTROL




110V 220V					
Curve	Symbol				
1	C D E/OF				
2	E				
3	L M				
5	J				
6	G				
7	FΡ				
8	Н				

External dimensions


(1) (2) Two positions Electrical operated directional control valve

DIRECTIONAL ON/OFF CONTROL

Size of subplate oil port

Mounting screw	Amount	Tighten torque
M6x40-10.9	4	15Nm

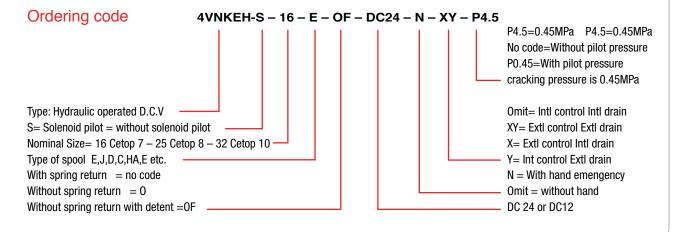
Supplementary explanation

- 1. When installing the product, considering horizontal position firstly.
- 2. The medium used in the hydraulic system must be filtered, its accuracy is at least 20 µ m.
- 3.Screw should be according to the parameters in catalogue.
- 4.The surface, connecting with the valve, should be
- Ra0.8 roughness, and 0.01/100mm flatness.

ELECTRO-HYDRAULIC DIRECTIONAL CONTROL VALVE

Electro-hydraulic directional control valve is a control valve which can use the pressure of the hydraulic circuit to pull the spool and change the hydraulic oil direction.

Electro-hydraulic directional control valve is the combination of the electrical operated directional control valve and the hydraulic directional control valve. It uses the electrical operated directional control valve to control the hydraulic operated directional control valve, and change the hydraulic oil direction.

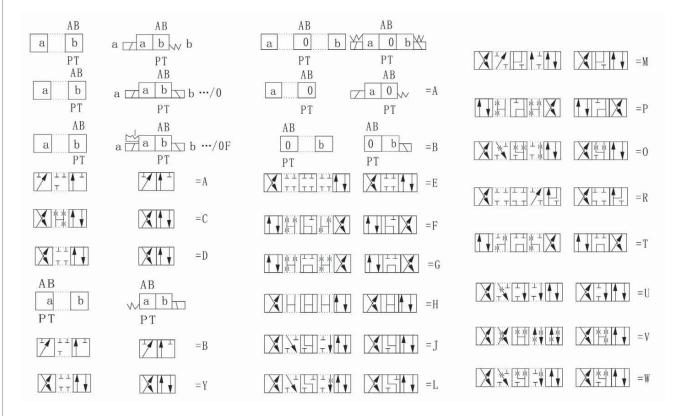

Electro-hydraulic directional control valve and hydraulic operated directional control valve are used mostly in hydraulic systems when electrical operated directional control valve can not afford the flow. It may control the movement of the power elements, or control the direction of the flowing oil.

Technical characteristics

Size			16	25	32
	Port A,B,P		31.5		
Allowed maximum processing (Mpg)	Port T	Extl relief		16	
Allowed maximum pressure (Mpa)	FUILI	Intl relief	16		
	Port Y Extl relief		1(6 for DC; 10 for A	NC .
Maximum control pressure (Mpa)			25		
Maximum Flow (L/min)			300	650	1100
Working	fluid			Mineral oil	
Fluid temperature (°C)				-20~70	
Wheight (Kg)	With pilot single solenoid valve		8.8	18	41
Wheight (Kg.)	With pilot doble solenoid valve		9.5	18.7	41.7

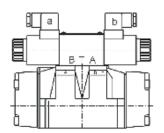
Cleanliness

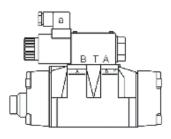
The maximum allowable cleanliness of the oil should be according to 9th degree of Standard NAS1638. It is suggested that the minimum filter rating should be ß10≥75.

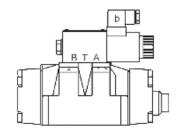


ELECTRO-HYDRAULIC DIRECTIONAL CONTROL VALVE

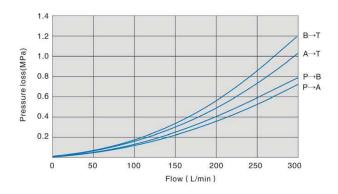
Code symbol




1)Example: Spool symbol H with spool A, ordering code HA.

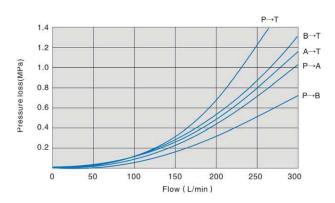


ELECTRO-HYDRAULIC DIRECTIONAL CONTROL VALVE

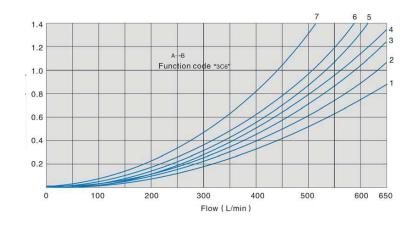


15

CETOP 7 NG16


SPECIFICATION PERFORMANCE CURVE Measured at v=41mm²/s and t=50°C

Spool E

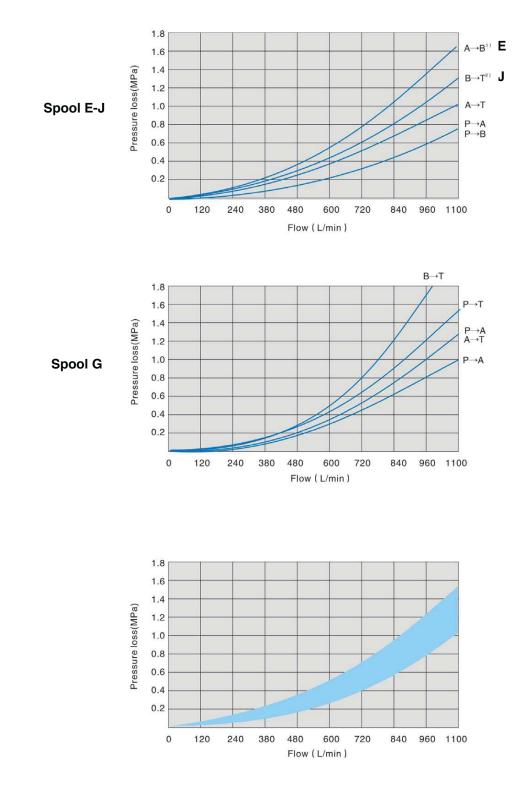


Pressure loss Mpa

Spool G

CETOP 8 NG25

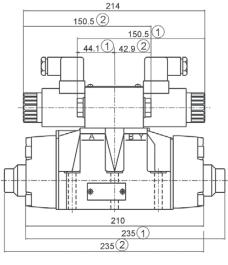
Function Code	Switching position				
Symbol	P→A	P→B	A→T	B→T	
E	1	2	4	5	
F	1	4	1	1	
G	4	2	2	6	
Н	4	4	1	4	
J	1	2	1	3	
L	2	3	1	4	
Μ	4	4	3	4	
Р	4	1	3	4	

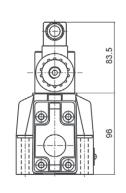


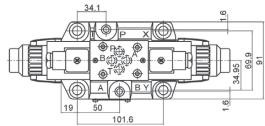
ELECTRO-HYDRAULIC DIRECTIONAL CONTROL VALVE

16

CETOP 10 NG32

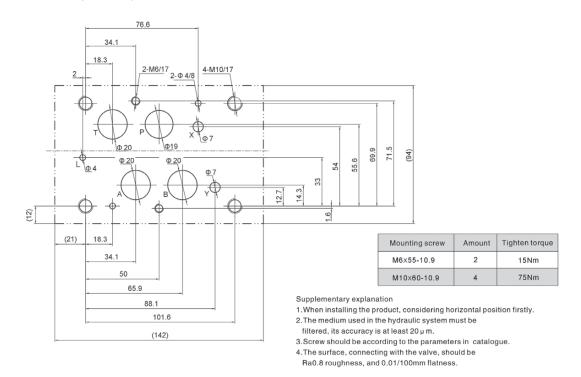





ELECTRO-HYDRAULIC DIRECTIONAL CONTROL VALVE

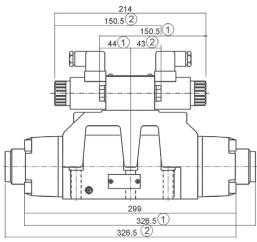
CETOP 7 NG16

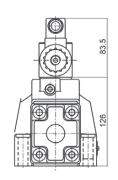
External dimensions



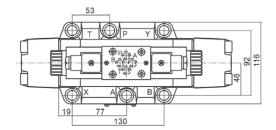
4/2 solenoid valve

Size of subplate oil port

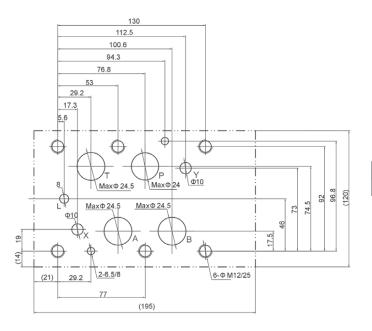




ELECTRO-HYDRAULIC DIRECTIONAL CONTROL VALVE


CETOP 8 NG25

External dimensions



18

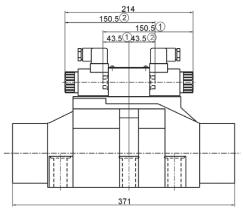
(1) (2)
 4/2 solenoid valve

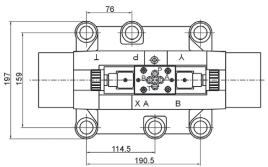
Size of subplate oil port

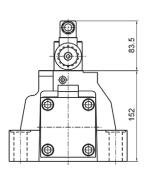
Mounting screw	Amount	Tighten torque
M12×60-10.9	6	130Nm

Supplementary explanation

- 1. When installing the product, considering horizontal position firstly.
- 2. The medium used in the hydraulic system must be filtered, its accuracy is at least 20 µ m.
- 3.Screw should be according to the parameters in catalogue.
- 4.The surface, connecting with the valve, should be Ra0.8 roughness, and 0.01/100mm flatness.

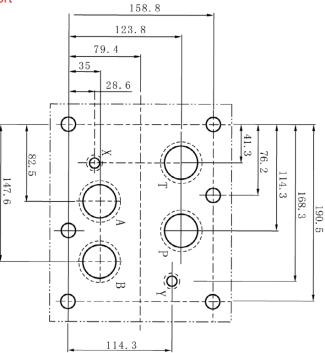




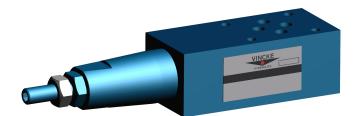

ELECTRO-HYDRAULIC DIRECTIONAL CONTROL VALVE

CETOP 10 NG32

External dimensions

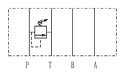


2
 4/2 solenoid valve

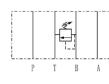

Size of subplate oil port

MODULAR VALVES SERIES

KRV RELIEF VALVES

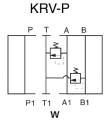

KRV series modular relief valves can control flow for positive direction pass oil port. Flow can be adjusted by handle. It passes to check valve for reverse flow.

Technical characteristics


Size	6	10	16
Max. Flow (L/min)	35	70	120
Max. W.P (Mpa)	31.5		
Working fluid	mineral oil ; phosphate-ester		
Fluid temperature (°C)		-20~70	
Viscosity (mm ² /s)		12~380	
Working fluid Fluid temperature (°C)	miner	-20~70	-ester

Ordering code KRV-06-P-1-3 Modular relief Valve NOMINAL SIZE: 06 Cetop 3 10 Cetop 5 16 cetop 7 P P Pipeline relief A Pipeline relief AB BA Pipeline relief B Pipeline relief W AB Pipeline relief Adjustment type: 1:rotatory knob 2: sleeve with exagon Setting pressure 5 to 50Mpa 1 to 10Mpa 2 to 20Mpa 3 to 31.5Mpa

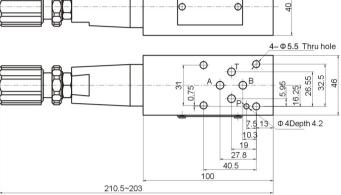
Code symbol



KRV-AB-BA

KRV-A

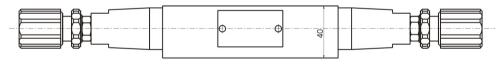
KRV-B

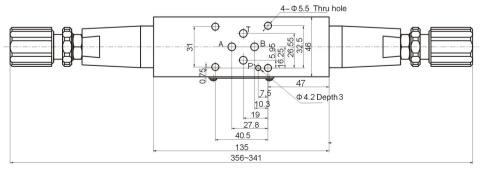


MODULAR VALVES SERIES


KRV RELIEF VALVES

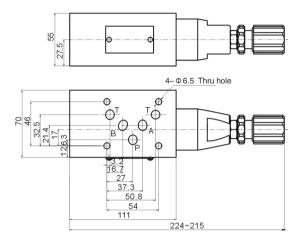
Dimensions



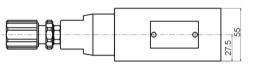


KRV-06-B/P

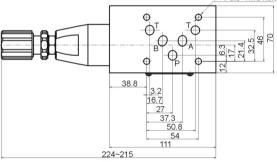
KRV-06-W



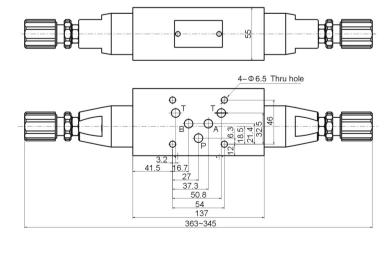
MODULAR VALVES SERIES


KRV RELIEF VALVES

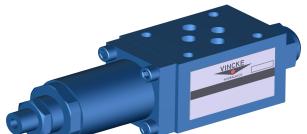
Dimensions



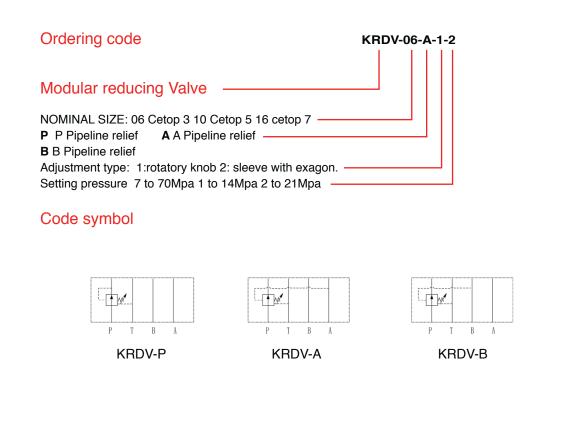
KRV-10-B/P


KRV-10-A

KRV-10-W



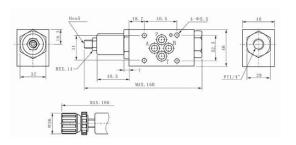
MODULAR VALVES SERIES


KRDV REDUCING VALVES

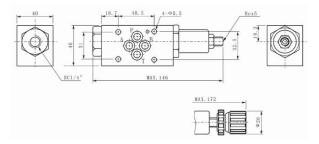
KRDV series modular reducing valves are used to reduce the pressure in a certain circuit lower than of the main circuit.

Technical characteristics

Size	6	10	16
Max. Flow (L/min)	35	70	120
Max. W.P (Mpa)		210	
Working fluid	mineral oil ; phosphate-ester		-ester
Fluid temperature (°C)	-20~70		
Viscosity (mm ² /s)	12~380		

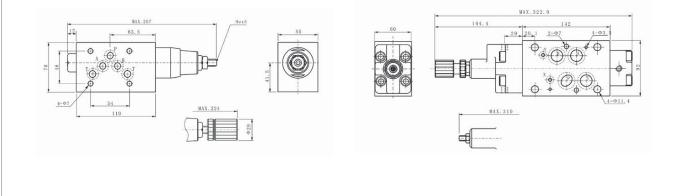


MODULAR VALVES SERIES


KRDV REDUCING VALVES

Dimensions

KRDV-06-B

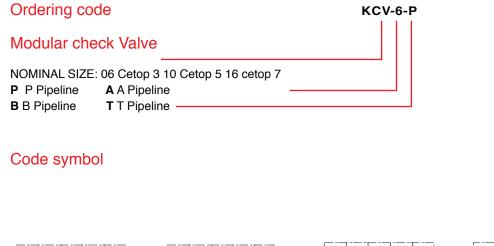


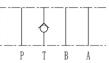
KRDV-06-A/P

KRDV-10-A/B/P

KRDV-16-A/B/P

MODULAR VALVES SERIES


KCV CHECK VALVES


KCV series modular check valves allow free flow in one direction and block flow in the counter direction.

Technical characteristics

Size	6	10	16
Max. Flow (L/min)	40	100	250
Max. W.P (Mpa)		31.5	
Working fluid	miner	al oil ; phosphate	-ester
Fluid temperature (°C)		-20~70	
Viscosity (mm ² /s)		12~380	
Opening pressure	A (0.05 B 0.25 C 0	0.4

KCV-06-P

A

Р

T B

KCV-06-A

Т

В

A

Р

KCV-06-B

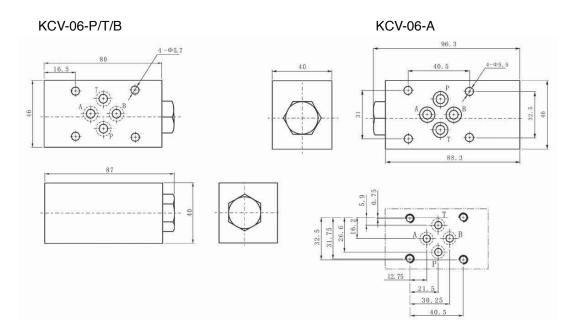
В

A

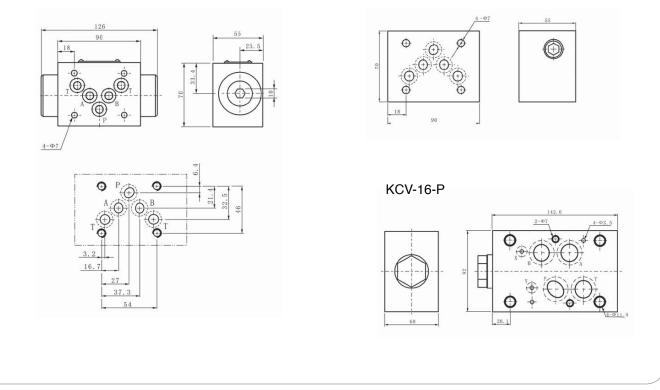
Р

Т

KCV-06-T


R-

MODULAR VALVES SERIES

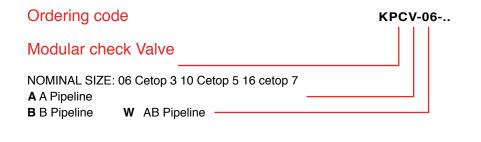

KCV CHECK VALVES

Dimensions

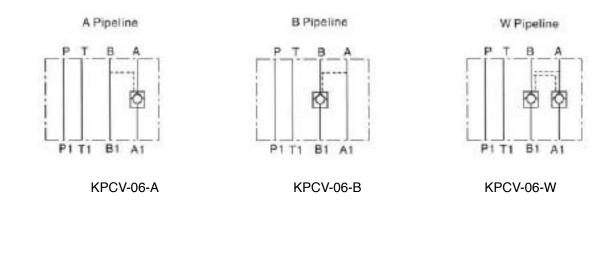
KCV-10-A/B

KCV-10-P/T

MODULAR VALVES SERIES


KPCV CHECK VALVES

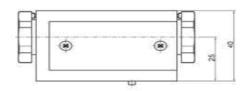
KPCV series modular check valves allow free flow in one direction and block flow in the counter direction.

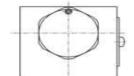


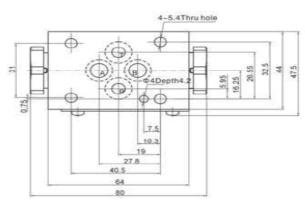
Technical characteristics

Size	6	10	16
Max. Flow (L/min)	60	100	200
Max. W.P (Mpa)		31.5	
Working fluid	miner	al oil ; phosphate	-ester
Fluid temperature (°C)		-20~70	
Viscosity (mm ² /s)		2,8~380	
Opening pressure	A (0.05 B 0.25 C	0.4

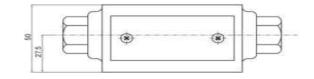
Code symbol

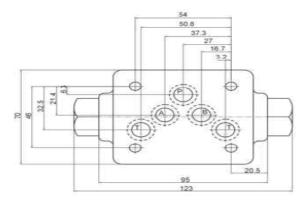


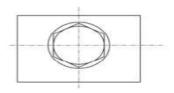

MODULAR VALVES SERIES

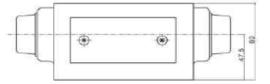

KPCV CHECK VALVES

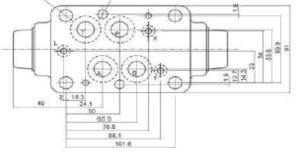
Dimensions


KPCV-06



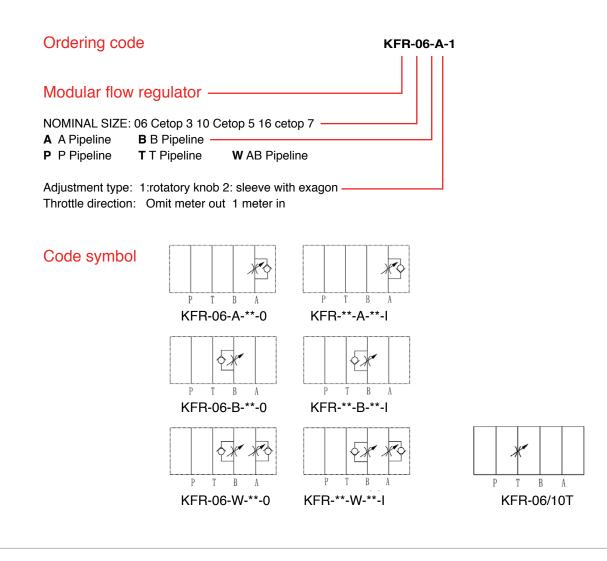



KPCV-10-



KPCV-16

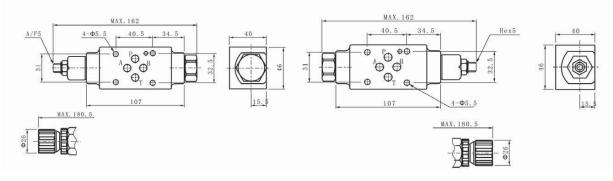
MODULAR VALVES SERIES MODULAR VALVES


KFR FLOW REGULATOR VALVES

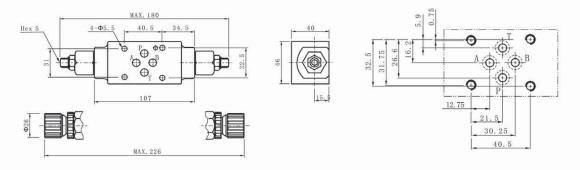
KFR series modular flow regulator valves are used to restrict flow by handle.

Technical characteristics

Size	6	10	16
Max. Flow (L/min)	35	70	200
Max. W.P (Mpa)		31.5	
Working fluid	miner	al oil ; phosphate	-ester
Fluid temperature (°C)		-20~70	
Viscosity (mm ² /s)	² /s) 2.8~380		
Opening pressure		A 0.05	


MODULAR VALVES SERIES

KFR FLOW REGULATOR VALVES


Dimensions

KFR-06-A

KFR-06-B

KFR-06-W

KFR-10-A

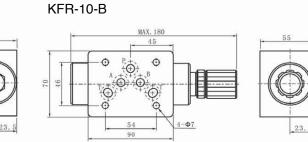
4-07

MAX, 180

φ

Œ 0

÷ (\oplus ++ \oplus

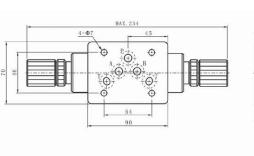

54 90

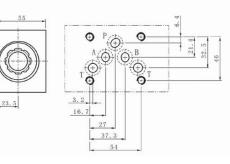
Φ

 \oplus

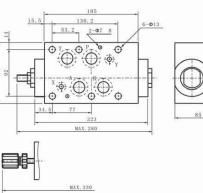
02

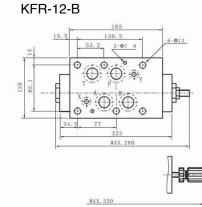
5

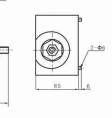


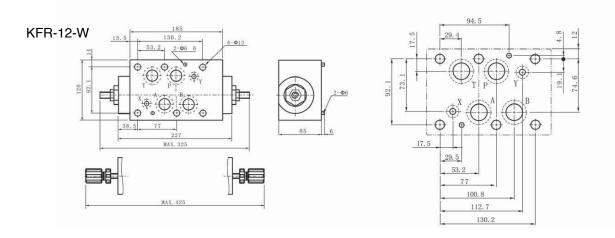


MODULAR VALVES SERIES MODULAR VALVES

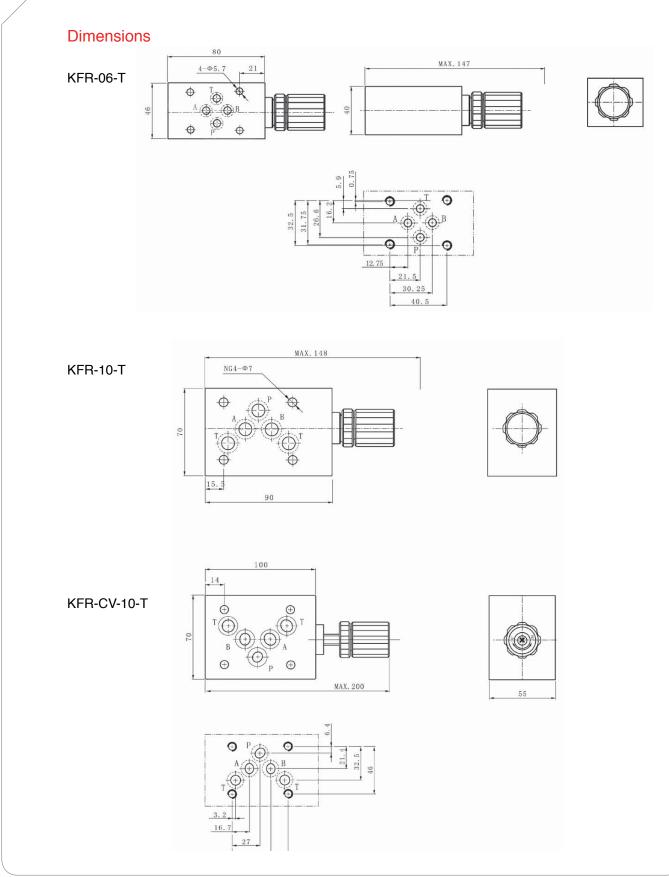

Dimensions







KFR-12-A



MODULAR VALVES SERIES

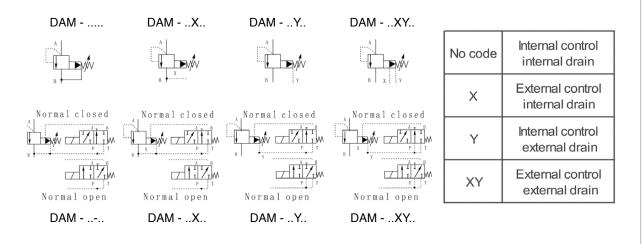


CONVENTIONAL VALVES

PRESSURE CONTROL

DAM

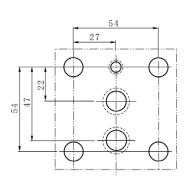
DAM s series pilot operated relief valves and DBW series solenoid operated relief valves can be used to control and unload system pressure.

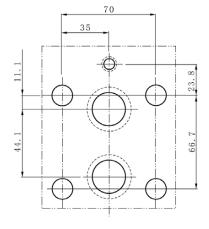


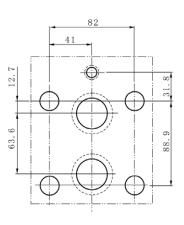
Technical characteristics

Size	10	20	30
Max. Flow (L/min)	250	500	650
Max. W.P (Mpa)		35	
Working fluid	miner	al oil ; phosphate	-ester
Fluid temperature (°C)	-20~70		
Viscosity (mm ² /s)	12~380		

Code symbol




CONVENTIONAL VALVES


DAM

Subplate mounting size:

DAM-10

DAM-20

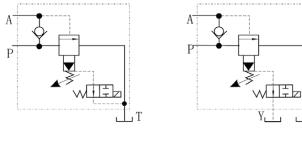
DAM-30

CONVENTIONAL VALVES

PRESSURE CONTROL

DIU

DIU series solenoid operated unloading valves are used to unload the oil pumps' pressure in a hydraulic system with accumulator. The valve allows high-pressure pump to operate and low-pressure pump to unload pressure.


Technical characteristics

Size	10	20	30
Max. Flow (L/min)	60	120	240
Max. W.P (Mpa)		31.5	
Working fluid	miner	al oil ; phosphate	-ester
Fluid temperature (°C) -20~70			
Viscosity (mm ² /s)	12~380		

Ordering code

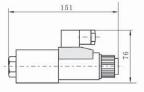
DIU-20-B-1-200-Y-17-DC24 Unloading relief valve+solenoid valve-Nominal size: 10 20 30 State: A normal closed B normal open · Adjustment type: 1:rotatory knob 2: sleeve with exagon -Working pressure: 50 5~50Mpa 100 10~10Mpa 200 80~20Mpa 315 16~31.5Mpa Oil Control: Omit= Intl control Intl drain XY= Extl control Intl drain X= Extl control Intl drain Y= Int control Extl drain Switching differential pressure (P A) 10 on average 17 on average -Working voltage DC24 DC12 AC110 AC220 -

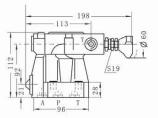
Code symbol

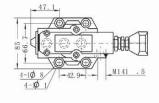
DIU 10/20/30

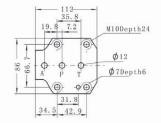
DIU 10/20/30 ... Y ...

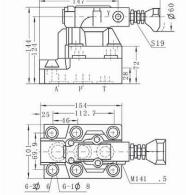
Τ

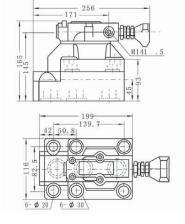


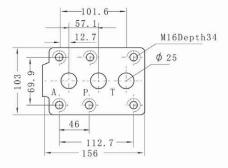


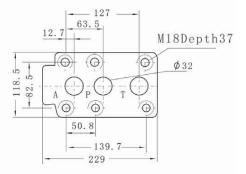

CONVENTIONAL VALVES


Subplate mounting size:


DIU 10







DIU 30

DIU 20

PROPORTIONAL MODULAR VALVES

The built-in 4/2-and 4/3-way directly operated proportional solenoid valves, direct operated spool without electrical position feedback Type VNKPV and VNKPV-IE Nominal sizes 6 and 10 Maximum operating pressure 315bar Maximum flow 42L/min (DN6) Maximum flow 75L/min (DN10)

Technical characteristics

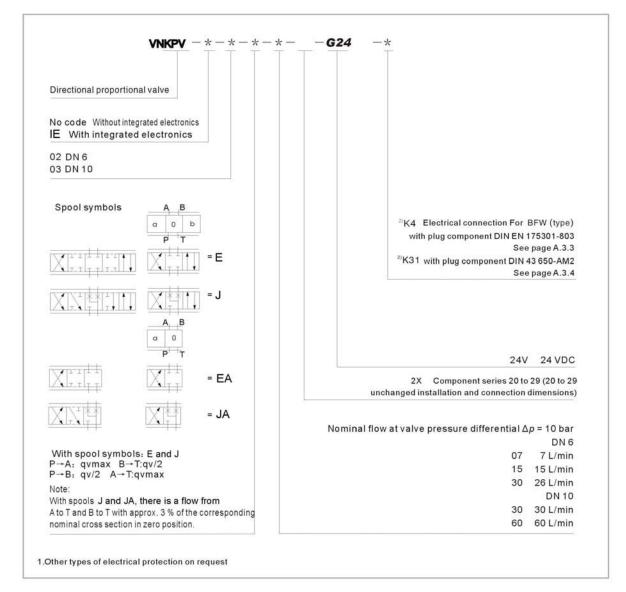
Model	VNKPV	VNKPV-IE		
Installation position	optional, pre	optional, preferably horizontal		
Storage temperature range °C		-20 -80		
Ambient temperature range °C	-20-70	-20-50		
Weight (kg) DN06	2	2,2		
DN10	6.6	7		

Hydraulic

Operating pressure (bar)	PortsA, B, P	315
	Port T	210
Nominal flow (L/min)	DN06	7, 15 and 26
When q _{"""} at ▲p=1 0 bar	DN10	30 and 60
Flow (Max. Permissible) (L/min)	DN06	42 (with double flow 42) 80
	DN10	75 (with double flow 75)140
Pressure fluid		Mineral oil (HL, HLP) to DIN 51 524; For other fluid please consult with us.
Fluid temp. Range °C		-20-80(+40-+50 is preference)
Viscosity range mm ² /s		20-380 (30-46 is preference)
Hysteresis %		<5
Reversal span %		<1
Response sensitivity %		<0,5
Cleanliness		Maximum permissible degree of fluid contamination to NAS 1638 to class 9

Electrical

Model		VNKPV	VNKPV-IE
Voltage type		Direc	ct voltage
VNKPV-IE	Voltage input "A1" (V)	± 10	± 10
Command signal	Current input "F1' (mA)	4~20	4~20
Max. current per solenoid (A)		2,5	2,5
Solenoid coil Resistance t n)	Cold value at 20'C	6DN2	10DN2
	Max. warm value	6DN3	10DN3
Duty cycle (%)			100
Max.Coil temperature2)			Up to 150
Electrical connection		Plug-in connector to DIN EN 175301-803 and	Plug-in connector to DIN 43 563
Insulation of valve to DIN 40		I	P65

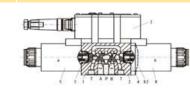

PROPORTIONAL MODULAR VALVES

Control electronics

VNKPV	Analogue amplifier	in Eurocard	Details refer to proport	tional amplifier
VINIXE V	Digital amplifier in E	Eurocard former	Details refer to proport	tional amplifier
VNKPV-IE (type)	Analogue command value module		Integrated into the value	/es
	Nominal voltage	VDC	24	4
	VNKPV-IE Lower	V	21/22 19	19
Supply voltage	limiting value			
	VNKPV" Upper	V	3	5
	limiting value			
Amplifier current	/ max	A	1,8	1,8
consumption	Max. impulse	А	3	3
	current		3	J

Due to the occurring surface temperature of the solenoid coils, the European Standards DIN EN 563 a must be taken into account! With VINCKE control electronics

Ordering code


PROPORTIONAL MODULAR VALVES

Structure and function description, section

The 4/2-way and 4/3-way proportional directional valves are designed as direct operated components for subplate mounting. They are actuated by means of proportional solenoid with central removable coil. The solenoid are controlled either by external control electronics (type VNKPV) or integrated control electronics (type VNKPV-IE).

Design:	Function:
The valves basically consist of: —Body (1) with mounting surface —Control spool (2) with compression springs (3 and 4) Solenoids (5 and 6) with central coil —Optional integrated electronics (7)	 When solenoids (5 and 6) do not work, the control spool (2) is held in the central position by compression springs (3 and 4) Direct actuation of the control spool (2) by energising a proportional solenoid E.g. When the solenoid "b" power is on (6) The control spool (2) is moved to the left in proportion to the electrical input signal connection from P to A and B to T via orifice-like crosssections with progressive flow characteristics When the solenoid power is off (6) The control spool (2) is returned to the central position by compression spring (3)

Model VNKPV-06

Model VNKPV-IE-10

Draining of tank line is to be avoided. With the

appropriate installation conditions, a back pressure valve is to be installed (back

In theory, the function of this valve is the same to the valve with 3 positions. However, the valves with 2 positions are only fitted with solenoid "a".

For DN6 valve, there is a plug (8.1) fixed in the second solenoid, but for DN10, it is a cover (8.2) instead

Electrical connection, plug-in connectors

Connection on component plug

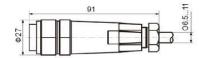
Connection on plug-in connector

Note for type VNKPV-06

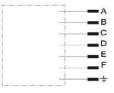
pressure approx. 2 bar).

To amplifier To amplifier

Plug-in connector: CECC 75 301-803-A002FA-H3D08-G/DIN EN 175 301-803 and ISO 4400



PROPORTIONAL MODULAR VALVES

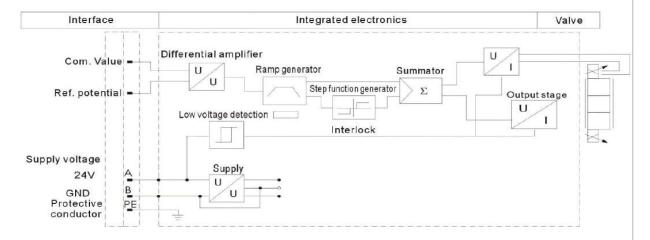

Electrical connection, plug-in connectors type VNKPV-IE

Plug-in connector: DIN 43 563-BF6-3/Pg11

Integrated electronics for type VNKPV-IE

	Contact	Signal
Supply voltage	A B	24VDC(19~35VDC) GND
	С	n.c. ⁽¹⁾
Differential amplifier input	D E	Com. value (±10V/4-20mA) reference potential
	F	n.c. ⁽¹⁾

Positive command value (0 to 10 V or 12 to 20 mA) at D and reference potential to E causes flow from P to A and B to T. Negative command value (0 to 10 V or 12 to 4 nnA) at D and reference potential to E causes flow from P to B and Ato T. For valves with a solenoid on side "a" (spool variants EA and JA) a positive command value at D and reference potentia I to E (NS 6: 4 to 20 mA and NS 10: 12 to 20 mA) causes flow from P to B and A to T.

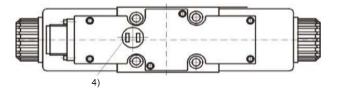

Recommendation:

-up to 25 m cable length type LiYCY 5 x 0.75 mm' up to 50 m cable length type LiYCY 5 40

x 1.0 mm2 External diameter 6.5 to 11 mm

Connect screen to PE only on the supply side

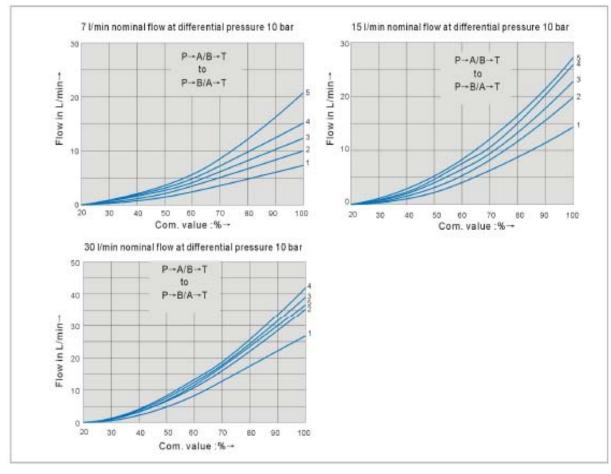
Block circuit diagram / connection allocation

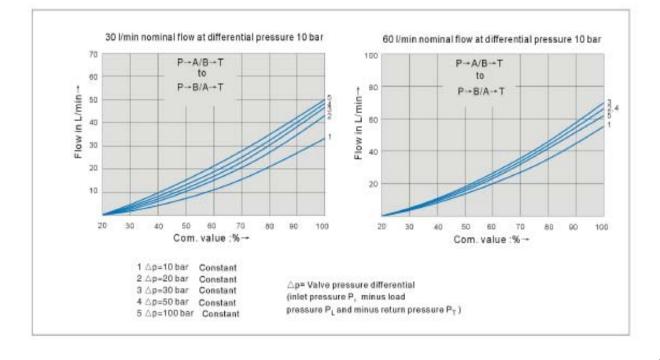

1)Contacts C and F must not be connected! Block circuit diagram / connection allocation 2)PE is connected to the cooling body and the valve housing

3)Protective conductor screwed to the valve housing and cover

4)Ramp can be externally adjusted from 0 to 2.5s; the same applies for Tup and Tdown

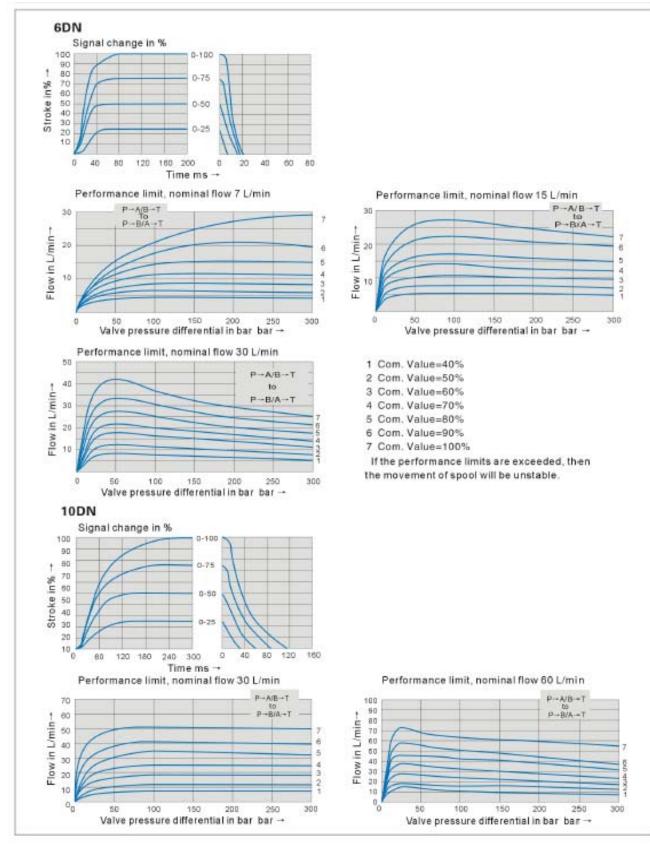
5)Output stages current regulated


6)Low voltage detection is not carried out for component type VNKPV-IE-10

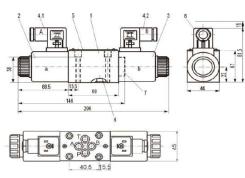


PROPORTIONAL MODULAR VALVES

Characteristic curves (measured with HLP46) DN6


Characteristic curves (measured with HLP46) DN10

PROPORTIONAL MODULAR VALVES

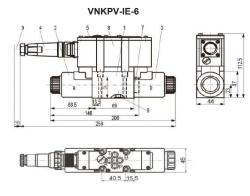


PROPORTIONAL MODULAR VALVES

43

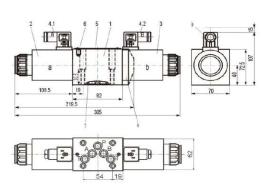
Unit dimensions size 06, Cetop 3

VNKPV-6

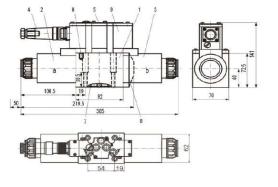


- 1 Valve body
- 2 Proportional solenoid "a"
- 3 Proportional solenoid "b"
- 4.1 4.2 Plug-in connector, colour black, separate order
- 5 Nameplate
- 6 8.73 x 1.78 I seal rings for portsA, B, P and T
- 7 Plug for valves with one solenoid (2 positions,
- spool type EA or JA)
- 8 Space required to remove the plug-in connector

VNKPV-10

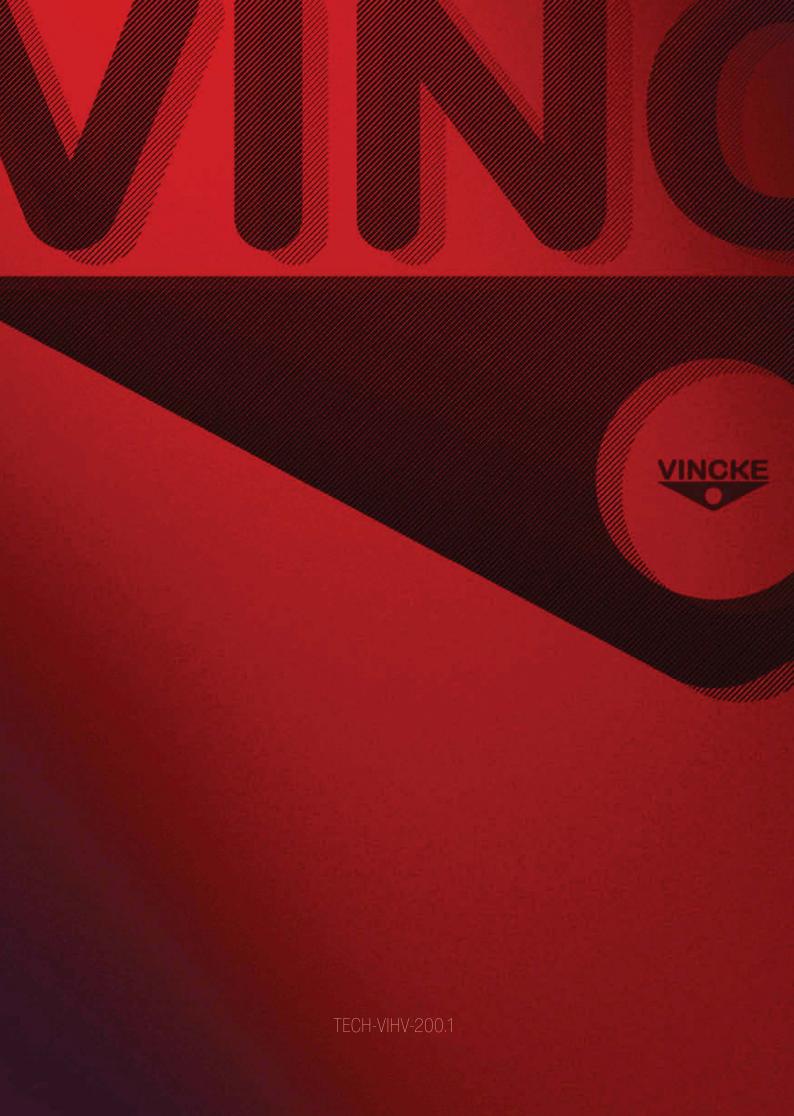

- 9 Machined valve mounting surface, connection location to DIN 24340A, 1504401 (and) CETOP-RP 121 H
- Valve fixing screws: 4tM5x 45 DIN 912-12.9; M .. = 8.9 Nm

Unit dimensions size 10, Cetop 5


1 Valve body

- 2 Proportional solenoid
- 3 Proportional solenoid
- 4 Plug-in connector to E DIN 43 563-BF6-3/Pg11, 5 Nameplate
- 6 8.73 x 1.78 0 Identical seal rings for portsA, B, P and T
- 7 Plug for valves with one solenoid (2 switched
- positions, spool type EA or JA)
- 8 Integrated electronics
- 9 Space required for the connection cable and to
- remove the plug-in connector
- 10 Machined valve mounting surface, connection location

1 Valve body


- 2 Proportional solenoid "a"
- 3 Proportional solenoid "b"
- 4.1 4.2 Plug-in connector , colour black, separate order
- 5 Nameplate
- 6 Valve deflation screw
- 7 12 x 2 seal rings for ports A, B, P and T
- 8 Plug for valves with one solenoid (2 positions
- spool type EA or JA)
- 9 Space required to remove the plug-in connector
- 10 Machined valve mounting surface, connection location
- to DIN 24 340A, 1804401 (and) CETOP-RP 121 H Valve fixing screws: 4'tM6x 40 DIN 912-12.9;

- 1 Valve body
- 2 Proportional solenoid "a"
- 3 Proportional solenoid "to-
- 4 Plug-in connector, to E DIN43563-BF6-31Pg11
- 5 Nameplate
- 6 Valve deflation screw
- 7 12 x 210 dentical seal rings for portsA, B, P and T
- 8 Plug for valves with one solenoid (2 positions
- spool type EA or JA)
- 9 Integrated electronics
- 10 Space required for the connection cable and to
- remove the plug-in connector
- 11 Machined valve mounting surface, connection location
- to DIN 24 340A, ISO4401 (and) CETOP-RP 121 H

VNKPV-IE-10

